
Supplementary Materials for
Resolving and Weighing the Quantum Orbits in Strong-Field Tunneling

Ionization

Here, we provide supplementary materials which include two sections. In the first section, the

details of our experiment are shown. In the second section, we show the effect of the Coulomb

interaction on the two-color scheme by comparing the results from the strong-field approximation

and Coulomb-corrected strong-field approximation.

I. EXPERIMENTAL METHOD

More details of phase-locked Mach-Zehnder interferometer scheme are given in this part. In

FIG. S1, the fundamental light is split into two arms of a Mach-Zehnder interferometer. In one arm

the fundamental light is frequency doubled in a 300 µm-thick β-barium-borate crystal. The inten-

sity is controlled with a λ/2-wave-plate–thin-film-polarizer pair in each arm. The pulse durations

(FWHM) of the 800 nm and 400 nm pulses are 40 fs and 110 fs, respectively. To accurately control

the relative phase between the fundamental frequency light and the frequency doubled light, we

introduce a single longitudinal mode continuous light of 532 nm as the reference light as shown

in FIG. S1. The interference fringes, formed after the combined reference lights, are collected by

CCD camera in real time. From the offset of the interference fringes, the optical path difference be-

tween the fundamental frequency light and the frequency doubled light can be calculated, and then

the piezoelectric ceramics of the fundamental frequency light are used for compensation and con-

trolling the relative phase. The phase-locked Mach-Zehnder interferometer scheme can eliminate

the influence of airflow disturbance and mechanical vibration on the relative phase. We precisely

scan the relative phase of the two-color laser pulse with a step of 0.1π. In each phase measurement

result, the phase fluctuation range is ± 0.02π.

In the experiment, we calibrate the intensities of the 800-nm and 400-nm pulses separately. For

the 800-nm pulse, a coarse estimation of the intensity of the 800-nm field is obtained by the 2Up

energy cutoff. Then, the more accurate intensity is calibrated by the positions of the ATI peaks

[31]. Due to the ponderomotive shift, the ATI peaks locate at En = nω − Ip − Up, where n
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denotes the number of absorbed photons, ω is the frequency of the 800-nm pulse and Ip is the

ionization potential. Using the coarse Up estimated from the energy cutoff, the absorbed photon

number n can be determined and then the accurate value of Up can be obtained from the shift of

the ATI peaks. With this method, the intensity of the 800-nm field is determined to be ∼1.2×1014

W/cm2. For the perturbative 400-nm field, the intensity is estimated by comparing the relative-

phase-dependent asymmetry of the photoelectron yield in some regions of the PEMDs with the

theoretical results from the time-dependent Schrödinger equation (TDSE). The asymmetry is de-

fined as (YL − YR)/(YL + YR), where YR indicates the normalized photoelectron total yield in

the region px ∈ [px1, px2], py ∈ [py1, py2], and YL represents the yield in the corresponding re-

gion px ∈ [−px2,−px1], py ∈ [py1, py2]. In FIG. S2, we present an example of the experimental

asymmetry (YL − YR)/(YL + YR) of the photoelectron with respect to relative phase in the region

|px| ∈ [0.3, 0.8] a.u., py ∈ [−0.2, 0.2] a.u.. The data from the TDSE are also shown there. By com-

paring the amplitude of the relative phase modulation with the TDSE results, the laser intensity of

the 400-nm field is estimated to be ∼0.3×1011 W/cm2. We note that the intensity of the 400-nm

field does not affect our results as long as it is weak enough.

The relative phase in the experiment is also calibrated by comparing the experimental data with

the TDSE results, as shown in FIG. S2.

II. THE COULOMB-CORRECTED STRONG-FIELD APPROXIMATION FOR THE

PHOTOELECTRON YIELD IN PARALLEL TWO-COLOR FIELD

In our work, the parallel two-color field is given by

F(t;φ) = f(t)[−F1 cos(ω1t)x⃗− F2 cos(ω2t+ φ)x⃗], (1)

where F1 and F2 indicate the electric field amplitudes of the fundamental (FM) driving field and

the second harmonic (SH) field, receptively. ω1 and ω2 denote their frequencies, respectively. φ

represents the relative phase of the two fields and x⃗ denotes the polarization direction. f(t) is

the envelope function of the laser pulse. In our calculations, the laser intensity of the FM field is

1.2×1014 W/cm2 and that of the SH field is 1.2×1011 W/cm2. The envelope of the lase pulse is

trapezoidal shape envelope with one cycle raise/fall and eight cycles plateau.

For the measured PEMDs, both the long and short orbits contribute. The ionization amplitude
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of photoelectron yield is expressed as the coherent superposition of long and short orbits, i.e.,

|Γ(p;φ)|2 = |
√
αΓL(p;φ) +

√
βΓS(p;φ)|2

= α|ΓL(p;φ)|2 + β|ΓS(p;φ)|2 + 2
√
α
√
β|ΓL(p;φ)||ΓS(p;φ)| cos(δθ).

(2)

Here, |ΓL(p;φ)|2 and |ΓS(p;φ)|2 indicate the ionization amplitudes of the long and short orbits,

respectively. α and β characterize their contributions. δθ is the phase difference between the long

and short orbits.

To identify the contributions of the long and short orbits in the PEMDs, we separately calculate

the ionization amplitudes of the long and short orbits based on the strong-field approximation

(SFA). Within SFA, the transition amplitude of photoelectron, from the initial ground state to a

final state with final momentum p, is expressed as.

|Γ(p;φ)|2 ∝ ρ(p, tj)e−2Im[Φ(p,tj ;φ)]. (3)

Here, ρ(p, tj) is the pre-exponential factor. It is insensitive to the weak SH field and thus is irrel-

evant for our present study. So in the following analysis, we drop this factor. In Γ, the classical

action is accumulated by

Φ(p, tj;φ) = −
∫ tf

tj

1

2
v(t;φ)2 + Ipdt, (4)

where v(t;φ) = p + A(t;φ) represents the kinetic momentum of electron at time t, A(t;φ) =

−
∫ τ

−∞ F(t;φ)dt denotes the vector potential of two-color laser field in dipole approximation, and

Ip expresses the ionization potential.

In our two-color field, the SH field is much weaker than the FM field, and thus the ionization

time tj of the electron trajectory j of Eq. 4 can be approximately obtained by the saddle-point

equation in the FM field, i.e.,

[p+ A1(tj)]
2/2 + Ip = 0, (5)

where A1 represents the vector potential of the FM field.

It should be noted that in SFA, the Coulomb interaction of the electron and parent ion has not

been taken into account, thus the correspondence between the final momentum and ionization time

from Eq. 5 is inaccurate. In our study, the ionization time is the decisive factor for the relative

phase dependence of the photoelectron yield. So, we have to correct the ionization time by includ-

ing the effect of the Coulomb interaction. In previous studies, it has been demonstrated that the
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Coulomb-corrected SFA can depict the photoelectron momentum map precisely. So, we employ

the Coulomb-corrected SFA to include the influences of Coulomb interaction in the followings.

In the FM field, the Coulomb force is taken into account by the electronic motion equation,

r̈ = dv/dt = −F1 − r/|r|3. (6)

Now, the canonical momentum p does not conserve, ṗ = d[v + A1(t)]/dt = −r/|r|3. Equa-

tion 5 determines the relationship of the ionization time and “initial” momentum. With Eq. 6, we

could establish the relation of the “initial” momentum and the final momentum (the measured

momentum). Then, the relationship between the measured momentum and the ionization time is

established. Figure S3 shows the ionization times of the long and short orbits with and without the

Coulomb correction. The Coulomb interaction induces notable differences in the ionization times.

Accordingly, the ionization amplitude of Eq. 3 in the Coulomb-corrected SFA is rewritten as

|Γ(p;φ)|2 ∝ e−2Im[Φ(p,t
′
j ;φ)], (7)

where t′j is the Coulomb-corrected ionization time. With this equation, we separately calculate the

relative phase dependences of the photoelectron yield from the long and short orbits, as indicated in

FIG. S4. It is shown that the photoelectron yield oscillates with the relative phase of the two-color

field. Here, the results from the SFA are also shown for comparison. It is clearly seen that there

is a remarkable shift between the optimal phases (where the photoelectron yield maximizes) from

SFA and Coulomb-corrected SFA for both of the long and short orbits. We note that the relation of

the optimal phase and ionization time obtained in our numerical calculations is in consistent with

the results given by Eq. 6 of [30].

We should mention that for the long orbit the electron wave packet is split into two pathways,

when it is driven back to the parent ion after tunneling ionization. One suffers a near-forward

rescattering and one without rescattering. For the momentum region we consider in our study,

this re-collision is soft re-collision, and the ionization times for the electron with the same final

momentum for these two pathway are nearly the same. Thus the relative phase dependences of

the photoelectron yield from these two pathways of the long orbit are the same. These results are

shown in FIG. S5. The optimal phases for the two pathways of the long orbit are the same, and

thus we don’t need to consider the near-forward rescattering process when we retrieve the relative

contributions of the long and short orbits.

For the experimentally measured PEMDs, both of the long and the short orbits contribute, and

the relative phase dependence of the photoelectron yield can be described by Eq. 2. Due to the
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laser focal volume effect, the interference pattern is smeared out. Therefore, the interference term

is not visible, and we ignore the interference term in Eq. 2.

To check the validity of this point, we compare the results with and without the interference

term using the data from SFA. The results are shown in FIG. S6. We extract the phases φm from

the SFA data where the interference term is kept and the result is shown in FIG. S6(d). We then

exclude the interference term in PEMD and extract the phase φm, the result is shown in FIG. S6(c).

The agreement of the obtained phases φm between these two treatments is remarkable. It means

that the responses of the photoelectron yields with and without interference term to the SH field

are the same. Thus, The interference term does not affect the obtained relative contribution of long

and short orbits, and thus the interference term can be canceled out safely in our scheme. As shown

above, the first two terms in Eq. 2 exhibit the cosine-like dependence on the relative phase of the

two-color field, and so, the experimental data can be approximately described by

cos(φ− φm) = α cos(φ− φL
m) + β cos(φ− φS

m), (8)

where φL
m and φS

m are the optimal phases of the long and short orbits, obtained with the Coulomb-

corrected SFA.
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FIG. S1: Schematic view of phase-locked Mach-Zehnder interferometer scheme.
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FIG. S2: (a) The normalized photoelectron total yield YR (green curve) and YL (blue curve) for px ∈

[0.3, 0.8] a.u., py ∈ [−0.2, 0.2] a.u and px ∈ [−0.8, 0.3] a.u., py ∈ [−0.2, 0.2] a.u. as functions of φ,

respectively. (b) (YL − YR)/(YL + YR) obtained from experiment (blue curve) and TDSE results (red

curve).
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FIG. S3: (a)-(b) The ionization times of the long and short orbits as function of px. The solid curves and

the circles indicate the results without and with the Coulomb correction, respectively.
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FIG. S4: The NDs at py = 0 as functions of relative phase. The upper and the lower rows correspond to the

results for the long and the short orbits, respectively. In the left column, the effect of the Coulomb correction

is not taken into account, and in the right column, the Coulomb correction has been included. The dashed

curves in (b) and (d) show the optimal phases of the NDs, and the solid curves indicate the optimal phases

of the NDs in (a) and (c).
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FIG. S5: The NDs at the cut of py = 0 as functions of φ for the long orbit. The solid purple curve indicates

the optimal phase of the direct electrons and the red circles show that of the rescattering electrons.
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FIG. S6: (a) The ionization amplitude |Γ(p;φ)|2 obtained by the coherent superposition of the long and

short orbits. (b) the cut of |Γ(p;φ)|2 at py = 0 with (solid yellow curve) and without (dashed green curve)

interference term. The solid blue curve shows the interference term cos(δθ) at py = 0. (c) and (d) NDs for

py = 0 at different relative phase. In (c) the interference term is not included, while in (d) it is contained.
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